Stability results for damped multilayer composite beams and plates

Thumbnail Image
Date
2009-01-01
Authors
Allen, Aaron
Major Professor
Advisor
Scott W. Hansen
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of
Versions
Series
Department
Mathematics
Abstract

Multilayer composite structures are used in a wide variety of applications, from sporting goods to aerospace engineering and in robotic arms and floor joists. A common design for a multilayer composite structure consists of n = 2m + 1 layers, in which m+1 stiff layers are bound together by m shear-deformable layers. It has been known for 50 years that the shear motion in the compliant layers is responsible for most of the damping of flexural vibrations. We consider multilayer beam and plate models in which linear viscous shear damping is included in the shear-deformable layers. We formulate the equations of motion for such a structure as a partial differential equation (PDE) semigroup problem, and we use the theory of PDE semigroups to prove stability results for damped multilayer beams and plates. In particular, we show that the semigroups associated multilayer beam and plate models of Mead and Markus are both analytic and exponentially stable, and we show that the semigroup associated with the multilayer beam of Rao and Nakra is exponentially stable under certain conditions. In addition, we consider two optimal damping problems for the multilayer Mead-Markus beam: i.) choosing damping parameters in the shear-deformable layers to achieve the optimal angle of analyticity, and ii.) choosing damping parameters in the shear-deformable layers to achieve the optimal energy decay rate.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2009