Improved understanding of near-ground winds in hurricanes and tornadoes

Thumbnail Image
Date
2009-01-01
Authors
Karstens, Christopher
Major Professor
Advisor
William A. Gallus
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Geological and Atmospheric Sciences
Abstract

Hurricanes and tornadoes contain the most destructive and life threatening winds on the planet. Combined, they are responsible for approximately $11 billion in damage in the U.S. annually. To compose a set of effective mitigation techniques, a comprehensive understanding of hurricane and tornado winds is needed. However, our understanding of these winds in the lowest 30 meters AGL, particularly their interaction with complex terrain, is lacking.

This thesis includes two studies that address this issue. In the first study, a representative wind profile extracted from WRF simulations of hurricanes is used to initialize CFD modeled flow interaction with built structures using Fluent. The magnitude of structurally-induced modifications to the wind profile is presented. In the second study, recent tornado pressure and wind measurements are compared to laboratory and numerical simulations of tornado-like vortices. In addition, a comparative range of minimum pressures from a wide variety of tornadoes with different size and intensities is presented.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2009