Degree Type

Thesis

Date of Award

2009

Degree Name

Master of Science

Department

Aerospace Engineering

First Advisor

Hui Hu

Abstract

The current investigation focuses on achieving a greater understanding on the aerodynamic phenomena that takes place during flapping flight and its application in the development of Micro Air Vehicles (MAVs) and Nano Air Vehicles (NAVs). Quantitative force measurements were made on the MAV model to understand its aerodynamic performance of flapping wings at different operational flight conditions. A comparative analysis was also made to understand the effects of wing membrane flexibility on the aerodynamic performance of an MAV. The results obtained from this study would help design a membrane based flapping wings which would have an optimum aerodynamic performance

Dragonflies are considered to be some of the most agile and maneuverable insects known to man due to which they taken as an inspiration for the study of flapping wing NAVs. Piezoelectric fans were used to simulate the flapping motion of insect wings due to their ability to generate a high wing beat frequency. Flow measurement studies on the fans placed in a tandem wing configuration were carried out with the help of Digital Particle Image Velocimetry (DPIV) by which quantitative flow field measurements were made. The PIV results provide a greater understanding of the vortex structures which were generated due to high frequency flapping motion of the wings.

DOI

https://doi.org/10.31274/etd-180810-2219

Copyright Owner

Anand Gopa Kumar

Language

en

Date Available

2012-04-30

File Format

application/pdf

File Size

137 pages

Share

COinS