Degree Type

Thesis

Date of Award

2009

Degree Name

Master of Science

Department

Computer Science

Major

Bioinformatics and Computational Biology

First Advisor

Vasant Honavar

Second Advisor

Heather Greenlee

Abstract

Understanding the gene networks that orchestrate the differentiation of retinal progenitors into photoreceptors in the developing retina is important not only due to its therapeutic applications in treating retinal degeneration but also because the developing retina provides an excellent model for studying CNS development. Although several studies have profiled changes in gene expression during normal retinal development, these studies offer at best only a starting point for functional studies focused on a smaller subset of genes. The large number of genes profiled at comparatively few time points makes it extremely difficult to reliably infer gene networks from a gene expression dataset. We describe a novel approach to identify and prioritize from multiple gene expression datasets, a small subset of the genes that are likely to be good candidates for further experimental investigation. We report progress on addressing this problem using a novel approach to querying multiple large-scale expression datasets using a `seed network' consisting of a small set of genes that are implicated by published studies in rod photoreceptor differentiation. We use the seed network to identify and sort a list of genes whose expression levels are highly correlated with those of multiple seed network genes in at least two of the five gene expression datasets. The fact that several of the genes in this list have been demonstrated, through experimental studies reported in the literature, to be important in rod photoreceptor function provides support for the utility of this approach in prioritizing experimental targets for further experimental investigation. Based on Gene Ontology and KEGG pathway annotations for the list of genes obtained in the context of other information available in the literature, we identified seven genes or groups of genes for possible inclusion in the gene network involved in differentiation of retinal progenitor cells into rod photoreceptors. Our approach to querying multiple gene expression datasets using a seed network constructed from known interactions between specific genes of interest provides a promising strategy for focusing hypothesis-driven experiments using large-scale `omics' data.

DOI

https://doi.org/10.31274/etd-180810-2290

Copyright Owner

Timothy Alcon

Language

en

Date Available

2012-04-30

File Format

application/pdf

File Size

54 pages

Share

COinS