Trajectory and spray control planning on unknown 3D surfaces for industrial spray painting robot

Thumbnail Image
Date
2008-01-01
Authors
Meng, Fanqi
Major Professor
Advisor
Frank E. Peters
Matthew C. Frank
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Department
Industrial and Manufacturing Systems Engineering
Abstract

Automated 3D path and spray control planning of industrial painting robots for unknown target surfaces is desired to meet demands on the production system. In this thesis, an image acquisition and laser range scanning based method has been developed. The system utilizes the XY projection of the boundaries of the target surface to generate the gun trajectory's X and Y coordinates as well as the spray control. Z coordinates and gun direction, distance, and speed are generated based on the point cloud from the target that is acquired by the laser scanner. A simulation methodology was also developed which is capable of calculating the paint thickness across the target surface. Results have shown that the generated path could perform a full coverage on the target surface, while keeping the paint material waste at the minimum. Excellent paint thickness control could be achieved on 2D and straight line sweep surfaces, while a satisfactory thickness is obtained on other 3D arbitrary surfaces. Relationships among thickness, spray deposition profile, sampling roughness and geometric features of the target surfaces have been discussed to make this method more applicable in industry.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2008