Degree Type


Date of Award


Degree Name

Doctor of Philosophy


Electrical and Computer Engineering

First Advisor

Chen-ching Liu


As the number of wind generation facilities in the utility system is fast increasing, many issues associated with their integration into the power system are beginning to emerge. Of the various issues, this dissertation deals with the development of new concepts and computational methods to handle the transmission issues and voltage issues caused by large-scale integration of wind turbines. This dissertation also formulates a probabilistic framework for the steady-state security assessment of wind power incorporating the forecast uncertainty and correlation.

Transmission issues are mainly related to the overloading of transmission lines, when all the wind power generated cannot be delivered in full due to prior outage conditions. To deal with this problem, a method to curtail the wind turbine outputs through Energy Management System facilities in the on-line operational environment is proposed. The proposed method, which is based on linear optimization, sends the calculated control signals via the Supervisory Control and Data Acquisition system to wind farm controllers. The necessary ramping of the wind farm outputs is implemented either by the appropriate blade pitch angle control at the turbine level or by switching a certain number of turbines. The curtailment strategy is tested with an equivalent system model of MidAmerican Energy Company. The results show that the line overload in high wind areas can be alleviated by controlling the outputs of the wind farms step-by-step over an allowable period of time.

A low voltage event during a system fault can cause a large number of wind turbines to trip, depending on voltages at the wind turbine terminals during the fault and the under-voltage protection setting of wind turbines. As a result, an N-1 contingency may evolve into an N-(K+1) contingency, where K is the number of wind farms tripped due to low voltage conditions. Losing a large amount of wind power following a line contingency might lead to system instabilities. It is important for the system operator to be aware of such limiting events during system operation and be prepared to take proper control actions. This can be achieved by incorporating the wind farm tripping status for each contingency as part of the static security assessment. A methodology to calculate voltages at the wind farm buses during a worst case line fault is proposed, which, along with the protection settings of wind turbines, can be used to determine the tripping of wind farms. The proposed algorithm is implemented in MATLAB and tested with MidAmerican Energy reduced network. The result shows that a large amount of wind capacity can be tripped due to a fault in the lines.

A probabilistic framework to handle the uncertainty in day-ahead forecast error in order to correctly assess the steady-state security of the power system is presented. Stochastic simulations are conducted by means of Latin Hypercube sampling along with the consideration of correlations. The correlation is calculated from the historical distribution of wind power forecast errors. The results from the deterministic simulation based on point forecast and the stochastic simulation show that security assessment based solely on deterministic simulations can lead to incorrect assessment of system security. With stochastic simulations, each outcome can be assigned a probability and the decision regarding control actions can be made based on the associated probability.


Copyright Owner

Naresh Acharya



Date Available


File Format


File Size

130 pages