Evaluation of ultrasonic pretreatment on anaerobic digestion of biomass for methane production

Thumbnail Image
Date
2008-01-01
Authors
Wu-haan, Wei
Major Professor
Advisor
Robert T. Burns
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

This thesis evaluated the effectiveness of ultrasonic pretreatment on biochemical methane potential (BMP) of corn-ethanol by-products (dried distiller grain with solubles (DDGs), centrifuge-solids, thin stillage, and corn-syrup) and four types of animal manure (swine slurry, beef feedlot manure, dairy manure slurry, and solids separated dairy manure effluent) and energy efficiency of ultrasonic pretreatment. Ultrasonic pretreatment was applied with various amplitude and treatment time settings. Biogas production was measured and analyzed for methane content and methane yield. Ultrasonic pretreatment of DDGs, centrifuge-solids, swine slurry, beef feedlot manure, dairy manure slurry, and solids separated dairy manure effluent increased methane production by 25, 12, 14, 55, 37 and 8%, respectively. An increase in ultrasonic amplitude and treatment time resulted in an overall increase in methane production, but with a reduction of energy efficiency. The greatest energy efficiency was obtained with the lowest ultrasonic amplitude combined with the shortest treatment time used.

Comments
Description
Keywords
Citation
Source
Copyright
Tue Jan 01 00:00:00 UTC 2008