Degree Type


Date of Award


Degree Name

Doctor of Philosophy


Materials Science and Engineering

First Advisor

Ralph E. Napolitano


Metallic glasses have been a promising class of materials since their discovery in the 1960s. Indeed, remarkable chemical, mechanical and physical properties have attracted considerable attention, and several excellent reviews are available. Moreover, the special group of glass forming alloys known as the bulk metallic glasses (BMG) become amorphous solids even at relatively low cooling rates, allowing them to be cast in large cross sections, opening the scope of potential applications to include bulk forms and net shape structural applications. Recent studies have been reported for new bulk metallic glasses produced with lower cooling rates, from 0.1 to several hundred K/s. Some of the application products of BMGs include sporting goods, high performance springs and medical devices. Several rapid solidification techniques, including melt-spinning, atomization and surface melting have been developed to produce amorphous alloys. The aim of all these methods is to solidify the liquid phase rapidly enough to suppress the nucleation and growth of crystalline phases. Furthermore, the production of amorphous/crystalline composite (ACC) materials by partial crystallization of amorphous precursor has recently given rise to materials that provide better mechanical and magnetic properties than the monolithic amorphous or crystalline alloys. In addition, these advances illustrate the broad untapped potential of using the glassy state as an intermediate stage in the processing of new materials and nanostructures. These advances underlie the necessity of investigations on prediction and control of phase stability and microstructural dynamics during both solidification and devitrification processes.

This research presented in this dissertation is mainly focused on Cu-Zr and Cu-Zr-Al alloy systems. The Cu-Zr binary system has high glass forming ability in a wide compositional range (35-70 at.% Cu). Thereby, Cu-Zr based alloys have attracted much attention according to fundamental research on the behaviors of glass forming alloys. Further motivation arising from the application of this system as a basis for many BMGs and ACC materials; the Cu-Zr system warrants this attention and offers great potential for the development of new materials. However, the prediction and control of microstructural evolution during devitrification remains challenging because of the complex devitrification behavior of the Cu-Zr binary alloy which is arising from the competition of metastable and stable phases and diversity of crystal structures. This dissertation details a systematic fundamental investigation into the mechanisms and kinetics of the various crystallization transformation processes involved in the overall devitrification response of Cu-Zr and Cu-Zr-Al glasses. Various isothermal and nonisothermal treatments are employed, and the structural response is characterized using bulk X-ray and thermal analysis methods as well as nano-scale microscopic analysis methods, revealing structural and chemical details down to the atomic-scale.

By carefully combining techniques such as differential scanning calorimetry (DSC), in-situ synchrotron high energy X-ray diffraction (HEXRD), and transmission electron microscopy (TEM) to quantify the characterization transformations, this research has uncovered numerous details concerning the atomistic mechanisms of crystallization and has provided much new understanding related to the dominant phases, the overall reaction sequences, and the rate-controlling mechanisms. As such this work represents a substantial step forward in understanding these transformations and provides a clear framework for further progress toward ultimate application of controlled devitrification processing for the production of new materials with remarkable properties.

Copyright Owner

Ilkay Kalay



Date Available


File Format


File Size

187 pages