The direct discontinuous Galerkin method with symmetric structure for diffusion problems

Thumbnail Image
Date
2012-01-01
Authors
Vidden, Chad
Major Professor
Advisor
Jue Yan
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of
Versions
Series
Department
Mathematics
Abstract

In this thesis, a discontinuous Galerkin (DG) finite element method for nonlinear diffusion equations named the symmetric direct discontinuous Galerkin (DDG) method is studied. The scheme is first developed for the one dimensional heat equation using the DG approach. To define a numerical flux for the numerical solution derivative, the solution derivative trace formula of the heat equation with discontinuous initial data is used. A numerical flux for the test function is introduced in order to arrive at a symmetric scheme.

Having a symmetric scheme is the key to proving an optimal $L^2(L^2)$ error estimate. In addition, stability results and an optimal energy error estimate are proven. In order to ensure stability of the scheme, a notion of flux admissibility is defined. Flux admissibility is analyzed resulting in explicit guidelines for choosing free coefficients in the numerical flux formula. The scheme is extended to one dimensional nonlinear diffusion, nonlinear convection diffusion, as well as two dimensional linear and nonlinear diffusion problems. Numerical examples are carried out to demonstrate the optimal $(k + 1)$th order of accuracy for the method with degree $k$ polynomial approximations for both linear and nonlinear problems, under one-dimensional and two-dimensional settings. In addition, admissibility analysis results are explored numerically.

Comments
Description
Keywords
Citation
Source
Copyright
Sun Jan 01 00:00:00 UTC 2012