Geographic information system tools for the analysis of commercial level multi-pass corn stover harvesting systems

Thumbnail Image
Date
2012-01-01
Authors
Peyton, Kevin
Major Professor
Advisor
Matthew Darr
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Renewable fuel production is essential to improve the energy independence of the United States. Cellulosic ethanol is renewable fuel that is gaining traction in the commercial fuels industry. This fuel can be made from agricultural residues and dedicated energy crops widely available in the Midwestern United States. The biofuels industry is already moving to meet these federal biofuels mandates and to establish sustainable biomass feedstock supply chains. Two companies have scheduled to build dedicated cellulosic ethanol refineries in Iowa. This initial phase of a biofuels supply chain is currently in its infancy and will require significant efficiency improvements and enhancement to current methods to ensure profitability. The resulting harvest costs, transportation costs and material quality all have significant impact on the cellulosic ethanol industry.

The objective of the first chapter of this thesis was to determine the best method for semi-automated and large scale analysis of machinery management parameters. Electronic data logging of GPS position and CAN messages provides the timing and operational status needed for calculation of machinery management terms. Additional information like fuel rate, engine speed, hydraulic flow, or specific implement parameters can also be captured. This data enables detailed performance evaluation. GIS software was used to query the dataset. Appropriate spatial selections and parameter filters were defined for each performance parameter. This ensured measurement of productivity terms in conformance to ASABE Machinery Management Standards.

The objective of the second chapter was to quantify and provide detailed information on the performance of corn stover collection equipment during industrial scale harvest operations. Current equipment developed for the hay and forage industry can be used to harvest corn stover. Understanding the performance characteristics of this repurposed forage equipment is critically important for the continued development of the cellulosic ethanol industry. Two windrowers, two square balers, and a bale collection system were evaluated as part of a 2010 partial corn stover residue harvest. An examination of machine operation allows researchers to calculate management parameters like field capacity, field efficiency, and fuel consumption.

The combined methods and results developed and reported in these articles can be used to aid with equipment selection, develop economic models, and help managers estimate operating costs associated with process scale up. With accurate performance data on specific equipment, modelers can evaluate the impact of different harvesting scenarios. This can help certify that the prescribed and implement methods are practical, achievable, and sustainable.

Comments
Description
Keywords
Citation
Source
Copyright
Sun Jan 01 00:00:00 UTC 2012