Degree Type

Thesis

Date of Award

2012

Degree Name

Master of Science

Department

Materials Science and Engineering

First Advisor

Mufit Akinc

Abstract

Mesoporous zirconia has properties such as high surface area, uniform pore size distribution, and large pore volume, thus attracting great attention from the research community. Self-assembled structures have been used as directing agents to synthesize mesoporous zirconia. Here, we investigated the use of block copolymers conjugated to cationic biomolecules such as lysozyme, as well as cationic block copolymers as templates to synthesize mesoporous zirconia in completely aqueous media. Based on the Pluronic-lysozyme conjugate template, we further studied the effects of preparation conditions, including calcination temperature, precursor concentration, and precipitating pH. Several technics such as TGA, XRD, TEM, and N2 sorption were employed to characterize the zirconia samples. The results showed that tetragonal zirconia started to form after 300°C calcination and became fully crystallized after 500°C, grew larger when heated to higher temperatures, and began to form monoclinic phase after 900°C calcination. Our modified templates enhanced the thermal stability and increased the surface area of zirconia samples. The results also indicated that low precursor concentration and alkali media helped to decrease the zirconia particle size as well as increase the specific surface area. The surface area of the as-synthesized zirconia sample exhibited an increase before 500°C and a decrease after that, the highest specific surface area, 348 m2/g, achieved after 500°C calcination which was obtained using 0.08mol/L precursor at pH=10.

Copyright Owner

Qinwen Ge

Language

en

File Format

application/pdf

File Size

86 pages

Share

COinS