Degree Type

Thesis

Date of Award

2013

Degree Name

Master of Science

Department

Industrial and Manufacturing Systems Engineering

First Advisor

Guiping Hu

Abstract

The U.S. government encourages the development of biofuel industry through policy and financial support since 1978. Though first generation biofuels (mainly bio-based ethanol) expand rapidly between the early 1980s and late 2000s, more attention has turned to second generation biofuels, such as cellulosic biofuels, due to the `food-versus-fuel' debate, and potential impact on land use and climate change caused by the development of first generation biofuel production.

Over the last few years, a rich literature has arisen on lignocellulosic crops or crop residues being used as biomass feedstock for second generation biorefineries. In this thesis, two types of assessments on cellulosic biofuel production have been conducted: techno-economic analysis of the fast pyrolysis fractionation pathway and supply chain design for the advanced biofuel production.

Firstly, the economic feasibility of a fast pyrolysis fractionation facility is examined. The facility takes lignocellulosic biomass feedstock, goes through the pyrolysis process, recovers pyrolysis oil into different fractions, and upgrades the fractions into two main products: commodity chemicals and liquid transportation fuels. The Internal Rate of Return (IRR) of this production pathway is evaluated to be 8.78%.

Secondly, mixed integer linear programming models are used to optimize locations and capacities of distributed fast pyrolysis facilities. The supply chain optimization framework is implemented in a case study of Iowa with the goal of minimizing total annual production cost. Comparisons are carried out to investigate the two choices for the centralized refining facility: outsourced to Louisiana or build a refining facility in Iowa. An extension of the supply chain design model to sequential facility location-allocation analysis is also performed for Iowa, taking budget availability and revised Renewable Fuel Standard (RFS2) goal into consideration. The objective is to maximize the net present value (NPV) of the profits over the next 10 years.

DOI

https://doi.org/10.31274/etd-180810-3526

Copyright Owner

Yihua Li

Language

en

File Format

application/pdf

File Size

72 pages

Share

COinS