The Turnip mosaic virus and its effects on Arabidopsis thaliana gene expression

Thumbnail Image
Date
2013-01-01
Authors
Campbell, Brian
Major Professor
Advisor
Steven A. Whitham
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and Microbiology
Abstract

Utilizing natural and engineered viruses is an accepted approach to studying plant-virus interactions as it relates to symptomology. The majority of the research topics were generated by deciphering where short-comings in the literature existed. Specifically, how Turnip mosaic virus (TuMV) helper component protease (HC-Pro) small RNA (sRNA) binding affinity affects expression of genes correlated with disease phenotypes and studying debilitated viruses in a variety of RNA silencing deficient Arabidopsis thaliana plants. Taken as a whole, the research presented addressed the susceptibility of A. thaliana to TuMV.

The first study was conducted to monitor genes implicated in symptomology in various RNA silencing pathway mutant backgrounds. I hypothesized that an in vitro approach, in conjunction with an in silico study would reveal the mechanism TuMV utilizes to regulate sRNA expression, post-infection. The second study focused on severe, moderate, and weak TuMV strains, versus A. thaliana response to pathogen challenge. I hypothesized that TuMV HC-Pro FRNK box mutants that differed in their ability to infect plants affected the function of host sRNA in graduated steps. I also postulated that these mutants might allow me to uncouple developmental abnormalities associated with disease progression and accumulation of the virus itself. In the final study, I combined my passion for plant pathology and molecular techniques to explore a topic unrelated to potyviruses.

Conclusions based on analyzing the transcripts and sRNAs of genes correlated with TuMV disease symptomology, quantifying their expression in wild-type and RNA silencing defective A. thaliana plants, and characterizing various TuMV viruses lacking RNA silencing suppressor activity will be discussed. Future directions will also be introduced.

Comments
Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2013