Degree Type


Date of Award


Degree Name

Doctor of Philosophy


Electrical and Computer Engineering

First Advisor

James D. McCalley


This dissertation contributes to develop the mathematical fundamentals and computational strategies of risk-based security-constrained optimal power flow (RB-SCOPF) and validate its application in electricity markets. The RB-SCOPF enforces three types of flow-related constraints: normal state deterministic flow limits, contingency state deterministic flow limits (the "N-1" criteria), and contingency state system risk, which depends only on contingency states but not the normal state. Each constraint group is scaled by a single parameter setting allowing tradeoffs between deterministic constraints and system risk. Relative to the security-constrained optimal power flow (SCOPF) used in industry today, the RB-SCOPF finds operating conditions that are more secure and more economic. It does this by obtaining solutions that achieve better balance between post-contingency flows on individual circuits and overall system risk. The method exploits the fact that, in a SCOPF solution, some post-contingency circuit flows which exceed their limits impose little risk while other post-contingency circuit flows which are within their limits impose significant risk. The RB-SCOPF softens constraints for the former and hardens constraints for the latter, thus achieving simultaneous improvement in both security and economy. Although the RB-SCOPF is more time-intensive to solve than SCOPF, we have developed efficient algorithms that allow RB-SCOPF to solve in sufficient time for use in real-time electricity markets. In contrast to SCOPF, which motivates market behavior to offload circuit flows exceeding rated flows, the use of RB-SCOPF provides price signals that motivate market behavior to offload circuit flows and to enhance system-wide security levels. Voltage stability testing has demonstrated that the dispatch result based on RB-SCOPF has higher reactive margins at normal state and after a contingency happens, thus has better static voltage stability performance.


Copyright Owner

Qin Wang



File Format


File Size

190 pages