Degree Type


Date of Award


Degree Name

Master of Science


Geological and Atmospheric Sciences

First Advisor

William Gallus Jr.


One of the primary mechanisms for supporting summer nocturnal precipitation across the central United States is the Great Plains low-level Jet (LLJ). Mesoscale Convective Systems (MCSs) are organized storm complexes that can be supported from the upward vertical motion supplied at the terminus of the LLJ, which bring beneficial rains to farmers. As such, a need for forecasting these storm complexes exists. Correlating forecast skills of the LLJ and MCS precipitation in high spatial resolution modeling was the main goal of this research. STAGE IV data was used as observations for MCS precipitation and the 00-hr 13 km RUC analysis was employed for evaluation of the LLJ. The 4 km WRF was used for high resolution forecast simulations, with 2 microphysics and 3 planetary boundary layer schemes selected for a sensitivity study to see which model run best simulated reality. It was found that the forecast skill of the potential temperature and directional components of the geostrophic and ageostrophic winds within the LLJ correlated well with MCS precipitation, especially early during LLJ evolution. Since the 20 real cases sampled consisted of three LLJ types (synoptic, inertial oscillation and transition), forecast skill in other parameters such as deep layer and low level shear, convergence, frontogenesis and stability parameters were compared to MCS forecast skill to see if consistent signals outside of the LLJ influenced MCS evolution in forecasts. No correlations were found among these additional parameters. Given the variety of synoptic setups present, the lack of forecast skill correlations between several variables and MCSs resulted as different synoptic or mesoscale mechanisms played varying roles if importance in different cases.


Copyright Owner

Brian Joseph Squitieri



File Format


File Size

95 pages