Degree Type

Thesis

Date of Award

2014

Degree Name

Master of Science

Department

Materials Science and Engineering

First Advisor

Scott Chumbley

Abstract

Following the 1993 Daubert v. Merrell Dow Pharmaceuticals, Inc. court case and continuing to the 2010 National Academy of Sciences report, comparative forensic toolmark examination has received many challenges to its admissibility in court cases and its scientific foundations. Many of these challenges deal with the subjective nature in determining whether toolmarks are identifiable. This questioning of current identification methods has created a demand for objective methods of identification - "objective" implying known error rates and statistically reliability. The demand for objective methods has resulted in research that created a statistical algorithm capable of comparing toolmarks to determine their statistical similarity, and thus the ability to separate matching and nonmatching toolmarks. This was expanded to the creation of virtual toolmarking (characterization of a tool to predict the toolmark it will create).

The statistical algorithm, originally designed for two-dimensional striated toolmarks, had been successfully applied to striated screwdriver and quasi-striated plier toolmarks. Following this success, a blind study was conducted to validate the virtual toolmarking capability using striated screwdriver marks created at various angles of incidence. Work was also performed to optimize the statistical algorithm by implementing means to ensure the algorithm operations were constrained to logical comparison regions (e.g. the opposite ends of two toolmarks do not need to be compared because they do not coincide with each other). This work was performed on quasi-striated shear cut marks made with pliers - a previously tested, more difficult application of the statistical algorithm that could demonstrate the difference in results due to optimization. The final research conducted was performed with pseudostriated impression toolmarks made with chisels. Impression marks, which are more complex than striated marks, were analyzed using the algorithm to separate matching and nonmatching toolmarks. Results of the conducted research are presented as well as evidence of the primary assumption of forensic toolmark examination; all tools can create identifiably unique toolmarks.

DOI

https://doi.org/10.31274/etd-180810-3850

Copyright Owner

Ryan Edward Spotts

Language

en

File Format

application/pdf

File Size

91 pages

Share

COinS