Modeling and simulations of strain-induced phase transformations in materials under compression and compression-torsion in traditional and rotational diamond anvil cells

Thumbnail Image
Date
2015-01-01
Authors
Feng, Biao
Major Professor
Advisor
Valery I. Levitas
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Aerospace Engineering
Abstract

Phase transformations (PTs) under high pressure and plastic shear are widespread in nature, physical experiments, and modern technologies. In order to study the effect of plastic deformations on PTs, a rotational diamond anvil cell (RDAC) and diamond anvil cell (DAC) without hydrostatic media are utilized, in which large plastic shear is superposed in the sample under high pressure. Such PTs are classified as strain-induced ones and they occur by nucleation at defects that continuously appear during the plastic deformation.

By applying finite element approach, plastic strain-induced PTs in a sample in DAC and RDAC are investigated in detail. A large-strain model for coupled PTs and plastic flow is developed, which includes micromechanically based strain-controlled kinetics. First, detailed analyses of the coupled plastic flow and PTs are studied during loading, unloading, and reloading. Second, an extended version of the Coulomb and plastic friction model for multiphase material with evolving concentration of phases is developed to model contact interaction on the contact surface. Third, cases without and with deformable gasket are compared and effects of gasket's size and strength are discussed. A new sliding mechanism at the contact line between the sample, gasket, and anvil called extrusion-based pseudoslip is revealed. Various experimentally observed effects are reproduced and interpreted. Possible misinterpretation of experimental PT pressure is found. The obtained results will allow one optimal design of experiments and conditions for synthesis of new high pressure phases.

Comments
Description
Keywords
Citation
Source
Copyright
Thu Jan 01 00:00:00 UTC 2015