Targeted nanovaccines against respiratory pathogens

Thumbnail Image
Date
2016-01-01
Authors
Goodman, Jonathan
Major Professor
Advisor
Balaji Narasimhan
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

Even though there are a large number and a wide variety of influenza vaccines manufactured for human use every year, the influenza virus continues to pose a significant public health problem. First, it has the ability to rapidly change its antigenic structure thereby avoiding the immune system, and secondly it has a large presence in animal reservoirs making zoonosis a constant threat. Current vaccines are limited, because they have different levels of efficacy across age groups and are notably weaker in the elderly. Additionally, the manufacturing process requires several months of lead time, putting significant strain on the ability to match the vaccine to circulating strains. A new generation of rationally designed influenza vaccines is necessary to combat these threats. In this regard, the use of nanovaccine technologies in influenza vaccine development shows great promise.

The overall goal of this research was to synthesize targeted nanoparticle-based vaccines against the influenza virus. Early on, in vitro studies were performed that focused on determining the role of the interactions between nanoparticle polymer chemistry, surface carbohydrate functionalization, and serum protein adsorption on dendritic cell activation. These studies identified nanoparticle formulations that are efficiently internalized by dendritic cells and that induced dendritic cell maturation. Later, the safety and biocompatibility of these carbohydrate-functionalized nanoparticles were evaluated by analyzing the histopathology of the liver, kidneys, and lungs of mice administered with these nanoparticle treatments. The cytokine and chemokine secretion in the bronchoalveolar lavage fluid as well as biomarkers in the blood and urine were analyzed for histopathological changes. In vivo, the ability of the carbohydrate-functionalized nanoparticles to induce potent cellular and humoral immune responses was evaluated using a model antigen, ovalbumin. These results were utilized to design efficacious nanoparticle-based formulations containing the influenza hemagglutinin antigen. Using these formulations, a live viral challenge was conducted in an animal model and the clinical response was evaluated.

Comments
Description
Keywords
Citation
Source
Copyright
Fri Jan 01 00:00:00 UTC 2016