Degree Type

Dissertation

Date of Award

2016

Degree Name

Doctor of Philosophy

Department

Biochemistry, Biophysics and Molecular Biology

Major

Biochemistry

First Advisor

Mark Hargrove

Abstract

The heme prosthetic group can be held into proteins in a variety of ways. Most often amino acid side chains coordinate one or both of the two available axial coordination sites of the heme iron. Coordination of both sites, such as in cytochrome b5, produces a good electron transfer protein but excludes the binding of exogenous ligands. In hemoglobins, coordination can occur at a single site (as in the “pentacoordinate” hemoglobins associated with oxygen transport), or at both sites (as in the “hexacoordinate” hemoglobins found in a wider distribution of organisms and functions). Surprisingly, hexacoordination in hemoglobins is usually reversible and a variety of exogenous ligands can bind most hexacoordinate hemoglobins. Reversible coordination brings a variety of chemical features to hexacoordinate hemoglobins by affecting their affinity for ligands, redox equilibrium, and the kinetics and extent of electron transfer. These reactions are reviewed for hexa- and pentacoordinate hemoglobins with the goal of using these characteristics for understanding potential functions of hexacoordinate hemoglobins in different species.

DOI

https://doi.org/10.31274/etd-180810-4808

Copyright Owner

Navjot Singh

Language

en

File Format

application/pdf

File Size

126 pages

Included in

Biochemistry Commons

Share

COinS