Degree Type


Date of Award


Degree Name

Doctor of Philosophy




Analytical Chemistry

First Advisor

Patricia A. Thiel


The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur.

We choose very specific conditions: very low temperature (5 K), and very low sulfur coverage (≤ 0.1 monolayer). In this region of temperature-coverage space, which has not been examined previously for these adsorbate-metal systems, the effects of individual interactions between metals and sulfur are most apparent and can be assessed extensively with the aid of theory and modeling. Furthermore, at this temperature diffusion is minimal and relatively-mobile species can be isolated, and at low coverage the structures observed are not consumed by an extended reconstruction. The primary experimental technique is scanning tunneling microscopy (STM).

The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.


Copyright Owner

Holly Walen



File Format


File Size

413 pages