Topics in statistical inference for massive data and high-dimensional data

Thumbnail Image
Date
2017-01-01
Authors
Peng, Liuhua
Major Professor
Advisor
Song Xi Chen
Dan Nettleton
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Journal Issue
Is Version Of
Versions
Series
Department
Statistics
Abstract

This dissertation consists of three research papers that deal with three different problems in statistics concerning high-volume datasets. The first paper studies the distributed statistical inference for massive data. With the increasing size of the data, computational complexity and feasibility should be taken into consideration for statistical analyses. We investigate the statistical efficiency of the distributed version of a general class of statistics. Distributed bootstrap algorithms are proposed to approximate the distribution of the distributed statistics. These approaches relief the computational burdens of conventional methods while preserving adequate statistical efficiency. The second paper deals with testing the identity and sphericity hypotheses problem regarding high-dimensional covariance matrices, with a focus on improving the power of existing methods. By taking advantage of the sparsity in the underlying covariance matrices, the power improvement is accomplished by utilizing the banding estimator for the covariance matrices, which leads to a significant reduction in the variance of the test statistics. The last paper considers variable selection for high-dimensional data. Distance-based variable importance measures are proposed to rank and select variables with dependence structures being taken into consideration. The importance measures are inspired by the multi-response permutation procedure (MRPP) and the energy distance. A backward selection algorithm is developed to discover important variables and to improve the power of the original MRPP for high-dimensional data.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2017