Limits on fine texture discrimination in humans and the role of friction

Thumbnail Image
Date
2016-01-01
Authors
Chimata, Geetha Pravallika
Major Professor
Advisor
Christian J. Schwartz
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Science, Technology, Engineering and Mathematics (STEM) disciplines are challenging to blind and visually impaired (BVI) individuals. One of the possible reasons is the complexity in representing and understanding scientific content. Introducing tactile elements such as textures into existing Braille characters can potentially increase the information content of Braille and could likely simplify the complex notations. However, such a task requires a thorough understanding of the discrimination of textures through touch. The current dissertation focuses on: 1) Investigating the psychophysical factors involved in texture discrimination and, 2) Developing a testing system to assess friction induced skin damage from repetitive motion over textured surfaces.

The tactile discrimination sensitivity for six fine textured non-patterned surfaces (fine-grit abrasive papers) was evaluated using a two-alternative forced choice technique. The surface roughness parameters and the coefficient of friction of the abrasive papers interacting with human skin were measured. Scanning electron microscopy images were used to observe the surface microstructure. The results suggest that differences in the mean spacing and the friction coefficients could be indicative of differentiability of fine textured samples. Three clearly differentiable textures identified from this study were used to investigate the effect of texture area on tactile discrimination sensitivity. A perception measurement experiment in combination with a friction measurement experiment was performed to understand the possible role of friction in touch-based texture discrimination. There was decrease in the discrimination ability with the decrease in the texture area.

An elastomeric skin simulant with layered structure similar to that of human skin was constructed to replicate skin friction blisters. The relationship between applied normal load and number of cycles of reciprocating motion required for blistering was studied. Additionally, a crack-growth model was developed treating the skin simulant as an adhesive-bonded laminar composite. This study made it evident that complete profile of the tribological system is required to develop a skin simulant that can accurately predict skin friction damage. Based on the current literature, the role of surface topography and elastic properties of the human skin on friction was uncertain. Coefficient of friction of four probing surfaces, human index finger pad, silicone replicas of the finger with and without fingerprints, and a smooth silicone sphere, when sliding against fine grit abrasive papers were compared to identify these roles.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 2016