Degree Type


Date of Award


Degree Name

Doctor of Philosophy


Electrical and Computer Engineering


Computer Engineering

First Advisor

Joseph Zambreno


The Kalman Filter is a robust tool often employed as a process observer in Cyber-Physical Systems. However, in the general case the high computational cost, especially for large plant models or fast sample rates, makes it an impractical choice for typical low-power microcontrollers. Furthermore, although industry trends towards tighter integration are supported by powerful high-end System-on-Chip software processors, this consolidation complicates the ability for a controls engineer to verify correct behavior of the system under all conditions, which is important in safety-critical systems and systems demanding a high degree of reliability.

Dedicated Field-Programmable Gate Array (FPGA) hardware can provide application speedup, design partitioning in mixed-criticality systems, and fully deterministic timing, which helps ensure a control system behaves identically to offline simulations. This dissertation presents a new design methodology which can be leveraged to yield such benefits. Although this dissertation focuses on the Kalman Filter, the method is general enough to be extended to other compute-intensive algorithms which rely on state-space modeling.

For the first part, the core idea is that decomposing the Kalman Filter algorithm from a strictly linear perspective leads to a more generalized architecture with increased performance compared to approaches which focus on nonlinear filters (e.g. Extended Kalman Filter). Our contribution is a broadly-applicable hardware-software architecture for a linear Kalman Filter whose operating domain is extended through online model swapping. A supporting application-agnostic performance and resource analysis is provided.

For the second part, we identify limitations of the mixed hardware-software method and demonstrate how to leverage hardware-based region identification in order to develop a strictly hardware-only Kalman Filter which maintains a large operating domain. The resulting hardware processor is partitioned from low criticality software tasks running on a supervising software processor and enables vastly simplified timing validation.


Copyright Owner

Aaron Mills



File Format


File Size

98 pages