Characterization of ice adhesion strength over different surfaces pertinent to aircraft anti-/de-icing

Thumbnail Image
Date
2017-01-01
Authors
Beeram, Prashanth Sagar Reddy
Major Professor
Advisor
Hui Hu
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Aerospace Engineering
Abstract

Aircraft icing is widely recognized as a significant hazard to aircraft operations in cold weather. A number of anti-/de-icing systems have been developed recently for aircraft icing mitigation and protection, which can generally be classified into two categories: active and passive methods. While active methods rely on energy input from an external system for the anti-/de-icing operation, passive methods take advantage of the physical properties of the surfaces to prevent ice formation and accretion. While there is no known passive system that can completely eliminate ice formation over the protected surfaces, passive anti-/de-icing methods, especially icephobic surface coatings, have been proved to be very helpful to mitigate the problematic effects of icing for various icing related applications.

In the present study, a comprehensive study was conducted to characterize ice adhesion strength over various surfaces by using a custom-built shear strength tester. The studied surfaces include recently developed functionalized surfaces like Slippery Liquid-Infused Porous Surfaces (SLIPS) and commercially-available surface coatings like Hydrobeadà ®, NeverWetà ®; polymer-based surfaces such as PMMA and PTFE, and conventional metals like aluminum and stainless steel. In addition, the static and dynamic contact angles for all the control surfaces were also measured in order to correlate the measured ice adhesion strength with the surface wettability. Furthermore, surface topography analysis was performed to acquire the 3-D surface profiles along with the averaged surface roughness in order to examine the effects of surface roughness on ice adhesion strength. Similarly, the ice adhesion strength was also analyzed at different temperatures (i.e., -50C, -100C, -150C and -200C ) to reveal the temperature effects on the ice adhesion strength over hydrophilic and hydrophobic surfaces. The influence of the durability of surface coatings on the ice adhesion performance of hydro-/ice-phobic coatings was also investigated experimentally in the present study. In coordinating with the experimental study, a numerical analysis was also performed to explore/optimize experimental design paradigms to minimize the measurement uncertainties.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2017