Degree Type

Dissertation

Date of Award

2017

Degree Name

Doctor of Philosophy

Department

Mechanical Engineering

Major

Mechanical Engineering

First Advisor

Sonal Padalkar

Abstract

Metallic nanostructures are of great interest due to their applicability in various modern technologies, such as catalysis, sensing, and optoelectronics. In this work, we employed three solution-based methods, including colloidal suspension synthesis, modified galvanic displacement, and electrodeposition, to synthesize nanostructured metals and transition metals, including gold (Au), copper (Cu), platinum (Pt), palladium (Pd), nickel (Ni), and cobalt (Co). Our focus was to establish process-structure-property relationship and explore their applicability in the field of sensing and clean energy generation. More precisely we established relationships between experimental parameters, such as temperature, applied potential, electrolyte pH, reactant concentration, additive, and the number of deposition cycles, and the characteristics of the nanostructures, such as morphology, density, size, and size distribution. Our results indicated that the nanostructures were tunable by adjusting the process parameters. This provided insight into the growth mechanisms of the metallic nanostructures. Since properties of the nanostructures are tunable by controlling the structure, our results provided researchers with additional tools to obtain nanomaterials with desired properties for specific applications. The materials synthesized by our methods were utilized to as substrates for surface enhanced Raman spectroscopy (SERS) and as photocathodes for photoelectrochemical production of hydrogen. The results showed that the performances of our materials were either promising or compatible with those reported in the literature, thus bringing new opportunities to the development of low-cost, high-performance, and flexible nanomaterials for the current and future technologies.

DOI

https://doi.org/10.31274/etd-180810-5858

Copyright Owner

Minh Hoang Tran

Language

en

File Format

application/pdf

File Size

161 pages

Share

COinS