Degree Type

Thesis

Date of Award

2017

Degree Name

Master of Science

Department

Industrial and Manufacturing Systems Engineering

Major

Industrial and Manufacturing Systems Engineering

First Advisor

Cameron A. MacKenzie

Abstract

Deep uncertainty usually refers to problems with epistemic uncertainty in which the analyst or decision maker has very little information about the system, data are severely lacking, and different mathematical models to describe the system may be possible. Since little information is available to forecast the future, selecting probability distributions to represent this uncertainty is very challenging. Traditional methods of decision making with uncertainty may not be appropriate for deep uncertainty problems. This paper introduces a novel approach to allocate resources within complex and very uncertain situations. The resource allocation model for deep uncertainty (RAM-DU) incorporates different types of uncertainty (e.g., parameter, structural, model uncertainty) and can consider every possible model, different probability distributions, and possible futures. Instead of identifying a single optimal alternative as in most resource allocation models, RAM-DU recommends an interval of allocation amounts. The RAM-DU solution generates an interval for one or multiple decision variables so that the decision maker can allocate any amount within that interval and still ensure that the objective function is within a predefined level of optimality for all the different parameters, models, and futures under consideration. RAM-DU is applied to allocating resources to prepare for and respond to a Deepwater Horizon-type oil spill. The application identifies allocation intervals for how much should be spent to prepare for this type of oil spill and how much should be spent to help industries recover from the spill.

DOI

https://doi.org/10.31274/etd-180810-5873

Copyright Owner

Lei Yao

Language

en

File Format

application/pdf

File Size

41 pages

Share

COinS