An FPGA-based hardware accelerator for iris segmentation

Thumbnail Image
Supplemental Files
Date
2018-01-01
Authors
Avey, Joseph
Major Professor
Advisor
Joseph Zambreno
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer Engineering
Abstract

Biometric authentication is becoming an increasingly prevalent way to identify a person based on unique physical traits such as the fingerprint, the face, and/or the iris. The iris stands out particularly among these traits due to its relative invariability with time and high uniqueness. However, iris recognition without special, dedicated tools like near-infrared (NIR) cameras and stationary high-performance computers is a challenge. Solutions have been proposed to target mobile platforms like smart phones and tablets by making use of the RGB camera commonly found on those platforms. These solutions tend to be slower than the former due to the decreased performance achieved in mobile processors. This work details an approach to solve the mobility and performance problems of iris segmentation in current solutions by targeting an FPGA-based SoC. The SoC allows us to run the iris recognition system in software, while accelerating slower parts of the system by using parallel, dedicated hardware modules. The results show a speedup in segmentation 2X when compared to an x86-64 platform and 46X when compared to an ARMv7 platform.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Tue May 01 00:00:00 UTC 2018