Improving cell-free protein synthesis for rapid screening applications

Thumbnail Image
Date
2018-01-01
Authors
Dopp, Jared
Major Professor
Advisor
Nigel F. Reuel
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

Cell-free protein synthesis (CFPS) is a versatile tool for protein research and biomanufacturing. This work goes into great detail explaining the history and biochemical utility of supplements used in various energy mixes. The biological role of each component is discussed in a way that is easily understood by newcomers to the field. This work also takes a unit operations approach to simplifying extract preparation, as well as a novel method for DNA amplification. E. coli cell growth was optimized using a face centered cubic designed experiment that provided an IPTG induction time of 201 min and a harvest time of 255 min. These times correspond to 1 L of growth culture in a 2.5 L shake flask. Experiments were then conducted to determine the optimal number passes through a French press homogenizer (1) as well as the best time and temperature combination for lyophilization (4 hr and 15 Celsius). The resulting extract was more effective than that of commercial kits. This can be used in conjunction with a novel DNA amplification method that modifies a minimal linear template for use in rolling circle amplification. This minimalist template showed identical expression levels to traditional plasmid-based expression using sfGFP. This template was used to successfully express multiple proteins from various classes: sfGFP, mVenus, mCherry, four previously uncharacterized GFP variants, chloramphenicol acetyl transferase, a chitinase catalytic domain, subtilisin, an anti-GFP nanobody, BP100, and CA(1-7)M(2-9). Future directions for the use of CFPS in developing fusion proteins and nanobodies for therapeutics will also be discussed.

Comments
Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Sat Dec 01 00:00:00 UTC 2018