Additive manufacturing of flexible energy harvesting and storage device

Thumbnail Image
Date
2019-01-01
Authors
Chen, Bolin
Major Professor
Advisor
Jonathan Claussen
Shan Hu
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Printing technology as an additive manufacturing method offers promising approach to deposit functional nanomaterials in a scalable fashion. Thermoelectric generators (TEGs) offer seemingly limitless, clean energy to power ever more increasing and complex wearable and pocket devices. The burgeoning field of wearable technologies, or body worn application- enabled computing devices, are capable of providing user feedback/alerts from multiple devices that continuously monitor metrics such as physical and muscular activity; cardiac and respiratory rates; as well as temperature, humidity, and light. The challenge of supplying continuous power in a non-invasive fashion to ever more complex and numerous wearable devices is a key prohibitive bottleneck to commercialization. A manufacturing process involved additive manufacturing is studied to highly-efficient thermoelectric generators to power wearable devices via body heat.

Such wearable power generation would be of interest to a myriad of applications including those associated with particular fields of work/leisure efficiency (e.g., computing and communication devices that connect to the internet and supply requested information), biomedical monitoring (e.g., wearable sensors that monitor respiratory, muscular, and metabolism activity) and military applications (e.g., devices that alert the warfighter of nearby biochemical threats).

On the other hand, supercapacitors have emerged as a promising energy storage device, due to their high power, long cycle life, and ability to bridge the energy and power gap between batteries and conventional dielectric capacitors. Supercapacitors are widely used in electronic systems where fast and frequent charging/discharging is required. Hybrid power sources integrating batteries and supercapacitors together provide both high energy and high power at the

same time. Herein, we report for the use of DIW technology for printing fully packaged flexible supercapacitors.

Comments
Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Thu Aug 01 00:00:00 UTC 2019