Degree Type

Thesis

Date of Award

2020

Degree Name

Master of Science

Department

Industrial and Manufacturing Systems Engineering

Major

Industrial Engineering

First Advisor

Matthew C Frank

Abstract

This research introduces a hybrid additive and subtractive method for producing multiple material components consisting of metal and polymer regions. The method expands the notion of hybrid beyond multiple processes, to include multi-materials, taking advantages from each process and material. An AMBIT PE-1 polymer screw extrusion tool has been integrated into a HAAS machining center, bringing large scale additive manufacturing in-envelope with subtractive manufacturing. In this thesis, the effect of cooling time on the ability to reproduce overhanging geometry and on the strength of the interlayer bonding is investigated. This evaluation provides the baseline needed to evaluate the strength of the material transition. A mechanically interlocking root structure is developed to join regions of dissimilar materials into a single component. Two geometries of this root structure are evaluated for their mechanical strength. This method of creating a mechanical bond between substrates can be applied in hybrid additive and subtractive applications where dissimilar materials have limited chemical compatibility. Expanding the material capabilities of hybrid manufacturing enables a future of rapid manufacturing where a wide range of complex components can be produced on a single piece of hardware without the need for part-specific tooling.

DOI

https://doi.org/10.31274/etd-20200624-247

Copyright Owner

Eric David Weflen

Language

en

File Format

application/pdf

File Size

57 pages

Share

COinS