Degree Type

Dissertation

Date of Award

2020

Degree Name

Doctor of Philosophy

Department

Mathematics

Major

Mathematics

First Advisor

Pablo Raúl Stinga

Abstract

This dissertation deals with the following two projects.

First, we characterize one-sided weighted Sobolev spaces W^{1,p}(R,ω), where ω is a one-sided Sawyer weight, in terms of a.e. and weighted L^p limits as α → 1− of Marchaud fractional derivatives of order 0 < α < 1. These are Bourgain–Brezis–Mironescu-type characterizations for one-sided weighted Sobolev spaces. Similar results for weighted Sobolev spaces W^{2,p}(R^n,ν), where ν is an A_p-Muckenhoupt weight, are proved in terms of limits as s → 1− of fractional Laplacians (−∆)^s. We also additionally study the a.e. and weighted L^p limits as α, s → 0+.

Second, we define fractional powers of nondivergence form elliptic operators (−aij(x)∂ij)^s for 0 < s < 1 with Hölder coefficients and characterize a Poisson problem driven by (−aij(x)∂ij)^s with a local degenerate extension problem. An interior Harnack inequality for nonnegative solutions to such an extension equation with bounded, measurable coefficients is proved. This in turn implies the interior Harnack inequality for the fractional problem.

DOI

https://doi.org/10.31274/etd-20200902-160

Copyright Owner

Mary Colleen Vaughan

Language

en

File Format

application/pdf

File Size

147 pages

Share

COinS