Strain estimations of the plantar fascia and other ligaments of the foot: Implications for plantar fasciitis

Thumbnail Image
Date
2021-01-01
Authors
Mettler, Jeff
Major Professor
Advisor
Timothy R Derrick
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Kinesiology
The Department of Kinesiology seeks to provide an ample knowledge of physical activity and active living to students both within and outside of the program; by providing knowledge of the role of movement and physical activity throughout the lifespan, it seeks to improve the lives of all members of the community. Its options for students enrolled in the department include: Athletic Training; Community and Public Health; Exercise Sciences; Pre-Health Professions; and Physical Education Teacher Licensure. The Department of Physical Education was founded in 1974 from the merger of the Department of Physical Education for Men and the Department of Physical Education for Women. In 1981 its name changed to the Department of Physical Education and Leisure Studies. In 1993 its name changed to the Department of Health and Human Performance. In 2007 its name changed to the Department of Kinesiology. Dates of Existence: 1974-present. Historical Names: Department of Physical Education (1974-1981), Department of Physical Education and Leisure Studies (1981-1993), Department of Health and Human Performance (1993-2007). Related Units: College of Human Sciences (parent college), College of Education (parent college, 1974 - 2005), Department of Physical Education for Women (predecessor) Department of Physical Education for Men
Journal Issue
Is Version Of
Versions
Series
Department
Kinesiology
Abstract

Plantar fasciitis is thought to occur due to excessive strain of the plantar fascia. There are numerous anatomical, biomechanical, and environmental factors that affect plantar fascia strain. Therefore, the first purpose of this dissertation was to investigate several biomechanical and environmental factors thought to increase plantar fascia strain. Fifteen healthy participants walked on a treadmill at two speeds, three inclines, and two shoe stiffness levels. A four-segment musculoskeletal model of the foot was used to analyze the data, and a significant effect of speed was found. Furthermore, the relationship between metatarsophalangeal (MTP) joint dorsiflexion and arch collapse was investigated, and the amount that each contributed to total plantar fascia strain was calculated. It was found that the increase in plantar fascia strain caused by MTP joint dorsiflexion is counteracted by the increase in arch height that occurs with MTP joint dorsiflexion, which is due to the function of the windlass mechanism. The second purpose was to validate a six-segment musculoskeletal model of the foot that estimates strains of several ligaments thought to assist the plantar fascia in arch support. Seven fresh-frozen cadaver specimens were dissected and ligament strains were directly measured using a manual digitizer. The directly-measured strains were compared to the model-estimated ligament strains as a way to validate the use of the model for future studies. The third purpose was to use the six-segment musculoskeletal model to determine the effects of a taping procedure on plantar fascia strain. Fifteen individuals with plantar fasciitis walked overground under two barefoot conditions: an untaped condition and a low-Dye taped condition. The low-Dye taped condition decreased the amount of arch collapse exhibited by the participants, and although the tape did not reduce peak plantar fascia strains during walking, it significantly reduced plantar fascia strains during midstance. We suggest that the taping method is effective due to its ability to reduce cumulative strain across the entire stance phase rather than peak strain. The final purpose was to use the musculoskeletal model to determine the effects of the low-Dye taped condition on several ligaments thought to assist the plantar fascia in arch support. Significant reductions of strain in the spring ligament and long plantar ligament affirm the role of these ligaments to provide support to the medial longitudinal arch.

Comments
Description
Keywords
Citation
Source
Copyright
Sat May 01 00:00:00 UTC 2021