Campus Units

Genetics, Development and Cell Biology, Plant Pathology and Microbiology

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

1-7-2021

Journal or Book Title

bioRxiv

Abstract

Protein activity, abundance, and stability can be regulated by posttranslational modification including ubiquitination. Ubiquitination is conserved among eukaryotes and plays a central role in modulating cellular function and yet we lack comprehensive catalogs of proteins that are modified by ubiquitin in plants. In this study, we describe an antibody-based approach to enrich peptides containing the di-glycine (diGly) remnant of ubiquitin and coupled that with isobaric labeling to enable quantification, from up to 16-multiplexed samples, for plant tissues. Collectively, we identified 7,130 diGly-modified lysine residues sites arising from 3,178 proteins in Arabidopsis primary roots. These data include ubiquitin proteasome dependent ubiquitination events as well as ubiquitination events associated with auxin treatment. Gene Ontology analysis indicated that ubiquitinated proteins are associated with numerous biological processes including hormone signaling, plant defense, protein homeostasis, and root morphogenesis. We determined the ubiquitinated lysine residues that directly regulate the stability of the transcription factors CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX 1 (CIB1), CIB1 LIKE PROTEIN 2 (CIL2), and SENSITIVE TO PROTON RHIZOTOXICITY (STOP1) using site directed mutagenesis and in vivo degradation assays. These comprehensive site-level ubiquitinome profiles provide a wealth of data for future studies related to modulation of biological processes mediated by this posttranslational modification in plants.

Comments

This preprint is made available through bioRxiv at doi: 10.1101/2021.01.07.425780.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Copyright Owner

Author/Funder

Language

en

File Format

application/pdf

Share

COinS