Campus Units
Genetics, Development and Cell Biology, Bioinformatics and Computational Biology, Center for Metabolic Biology
Document Type
Article
Publication Version
Submitted Manuscript
Publication Date
3-9-2021
Journal or Book Title
bioRxiv
DOI
10.1101/2021.03.08.434433
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has infected over 115 million people and caused over 2.5 million deaths worldwide. Yet, the molecular mechanisms underlying the clinical manifestations of COVID-19, as well as what distinguishes them from common seasonal influenza virus and other lung injury states such as Acute Respiratory Distress Syndrome (ARDS), remains poorly understood. To address these challenges, we combined transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues, matched with spatial protein and expression profiling (GeoMx) across 357 tissue sections. These results define both body-wide and tissue-specific (heart, liver, lung, kidney, and lymph nodes) damage wrought by the SARS-CoV-2 infection, evident as a function of varying viral load (high vs. low) during the course of infection and specific, transcriptional dysregulation in splicing isoforms, T cell receptor expression, and cellular expression states. In particular, cardiac and lung tissues revealed the largest degree of splicing isoform switching and cell expression state loss. Overall, these findings reveal a systemic disruption of cellular and transcriptional pathways from COVID-19 across all tissues, which can inform subsequent studies to combat the mortality of COVID-19, as well to better understand the molecular dynamics of lethal SARS-CoV-2 infection and other viruses.
Rights
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
Language
en
File Format
application/pdf
Recommended Citation
Park, Jiwoon; Foox, Jonathan; Hether, Tyler; Beheshti, Afshin; Saravia-Butler, Amanda; Singh, Urminder; Wurtele, Eve Syrkin; and et al., "Systemic Tissue and Cellular Disruption from SARS-CoV-2 Infection revealed in COVID- 19 Autopsies and Spatial Omics Tissue Maps" (2021). Genetics, Development and Cell Biology Publications. 266.
https://lib.dr.iastate.edu/gdcb_las_pubs/266
Included in
Cell and Developmental Biology Commons, Computational Biology Commons, Molecular Genetics Commons, Virus Diseases Commons
Comments
This preprint is made available through bioRxiv, doi:10.1101/2021.03.08.434433.