Tracer Advection Using Dynamic Grid Adaptation and MM5

Thumbnail Image
Date
2005-01-01
Authors
Iselin, John
Gutowski, William
Prusa, Joseph
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gutowski, William
Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Mechanical EngineeringAgronomyGeological and Atmospheric Sciences
Abstract

A dynamic grid adaptation (DGA) technique is used to numerically simulate tracer transport at meso- and regional scales. A gridpoint redistribution scheme is designed to maximize heuristic characteristics of a “good” grid. The advective solver used in conjunction with the DGA is the multidimensional positive definite advection transport algorithm (MPDATA). The DGA results for regional tracer transport are compared against results generated using the leapfrog as well as MPDATA advection schemes with uniformly spaced, static grids. Wind fields for all tracer transport algorithms are provided by the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). A mesoscale-sized test case with idealized initial condition and wind field clearly shows qualitatively and quantitatively the advantage of using the dynamic adaptive grid, which is a marked reduction in numerical error. These results are further corroborated by more realistic test cases that used NCEP–NCAR reanalysis data from 6–11 March 1992 to set initial and boundary conditions for (i) a mesoscale-sized, 24-h simulation with an idealized initial tracer field, and (ii) a regional, 5-day simulation with water vapor field initialized from the reanalysis data but then treated as a passive tracer. A result of interest is that MPDATA substantially outperforms the leapfrog method with fourth-order artificial dissipation (central to MM5) in all of our test cases. We conclude that with dynamic grid adaptation, results with approximately the same accuracy as a uniform grid may be obtained using only a quarter of the grid points of the uniform grid MPDATA simulations. Compared to results generated using the leapfrog method on a uniform grid, the DGA does even better.

Comments

This article is from Mon. Wea. Rev., 133, 175–187. doi: http://dx.doi.org/10.1175/MWR-2850.1. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2005
Collections