Gahnite composition as a means to fingerprint metamorphosed massive sulfide and non-sulfide zinc deposits

Thumbnail Image
Date
2015-01-01
Authors
O'Brien, Joshua
Spry, Paul
Teale, Graham
Jackson, Simon
Koenig, Alan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Spry, Paul
Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Geological and Atmospheric Sciences
Abstract

Gahnite occurs in and around metamorphosed massive sulfide (e.g., Broken Hill-type Pb–Zn–Ag (BHT), volcanogenic massive sulfide Cu–Zn–Pb–Au–Ag (VMS), sedimentary exhalative Pb–Zn (SEDEX)), and nonsulfide zinc (NSZ) deposits. In addition to occurring in situ, gahnite occurs as a resistate indicator mineral in unconsolidated sediments (e.g., glacial till) surrounding such deposits. The spatial association between gahnite and metamorphosed ore deposits has resulted in its use as an empirical exploration guide to ore. Major and trace element compositions of gahnite from BHT, NSZ, SEDEX, and VMS deposits are used here to develop geochemical fingerprints for each deposit type. A classification tree diagram, using a combination of six discrimination plots, is presented here to identify the provenance of detrital gahnite in greenfield and brownfield terranes, which can be used as an exploration guide to metamorphosed massive sulfide and non-sulfide zinc deposits. The composition of gahnite in BHT deposits is discriminated from gahnite in SEDEX and VMS deposits on the basis of plots of Mg versus V, and Co versus V. Gahnite in SEDEX deposits can be distinguished from that in VMS deposits using plots of Co versus V, Mn versus Ti, and Co versus Ti. In the Sterling Hill NSZ deposit, gahnite contains higher concentrations of Fe3+ and Cd, and lower amounts of Al, Mg, and Co than gahnite in BHT, SEDEX, and VMS deposits. Plots of Co versus Cd, and Al versus Mg distinguish gahnite in the Sterling Hill NSZ deposit from the other types of deposits.

Comments

This is an article from Journal of Geochemical Exploration 159 (2015): 48, doi:10.1016/j.gexplo.2015.08.005. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections