Campus Units

Geological and Atmospheric Sciences, Agronomy, Computer Science

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

1-2001

Journal or Book Title

Annual Review of Fluid Mechanics

Volume

33

First Page

549

Last Page

586

DOI

10.1146/annurev.fluid.33.1.549

Abstract

Shelterbelts or windbreaks were used for centuries to reduce wind speed, to control heat and moisture transfer and pollutant diffusion, to improve climate and environment, and to increase crop yields; but only within the last few decades have systematic studies considered the aerodynamics and shelter mechanisms of shelterbelts and windbreaks. This review examines recent modeling and numerical simulation studies as well as the mechanisms that control flow and turbulence around shelterbelts and windbreaks. We compare numerical simulations with experimental data and explain the relationships between sheltering effects and the structure of shelterbelts and windbreaks. We discuss how and why the desired effects are achieved by using numerical analysis. This chapter begins with the derivation of a general equation set for porous shelterbelts and windbreaks; the numerical model and simulation procedure are developed; unseparated and separated flows are predicted and characterized; the momentum budget and shelter mechanisms are analyzed; the effects of wind direction, density, width, and three dimensionality of shelterbelt structure on flow and turbulence are systematically described. Recent modeling and simulation of heat flux and evapotranspiration are also summarized. Finally, we discuss the use of high-performance distributed and parallel computing as well as clusters of networked workstations to enhance performance of the model applied to simulations of shelterbelts and windbreaks.

Comments

This is a manuscript of an article published as Wang, Hao, Eugene S. Takle, and Jinmei Shen. "Shelterbelts and windbreaks: mathematical modeling and computer simulations of turbulent flows." Annual Review of Fluid Mechanics 33, no. 1 (2001): 549-586. DOI:10.1146/annurev.fluid.33.1.549. Posted with permission.

Copyright Owner

Annual Reviews

Language

en

File Format

application/pdf

Published Version

Share

COinS