MCS rainfall forecast accuracy as a function of large-scale forcing

Thumbnail Image
Date
2004-01-01
Authors
Jankov, Isidora
Gallus, William
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gallus, William
Professor
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Geological and Atmospheric Sciences
Abstract

The large-scale forcing associated with 20 mesoscale convective system (MCS) events has been evaluated to determine how the magnitude of that forcing influences the rainfall forecasts made with a 10-km grid spacing version of the Eta Model. Different convective parameterizations and initialization modifications were used to simulate these Upper Midwest events. Cases were simulated using both the Betts-Miller-Janjić (BMJ) and the Kain-Fritsch (KF) convective parameterizations, and three different techniques were used to improve the initialization of mesoscale features important to later MCS evolution. These techniques included a cold pool initialization, vertical assimilation of surface mesoscale observations, and an adjustment to initialized relative humidity based on radar echo coverage. As an additional aspect in this work, a morphology analysis of the 20 MCSs was included. Results suggest that the model using both schemes performs better when net large-scale forcing is strong, which typically is the case when a cold front moves across the domain. When net forcing is weak, which is often the case in midsummer situations north of a warm or stationary front, both versions of the model perform poorly. Runs with the BMJ scheme seem to be more affected by the magnitude of surface frontogenesis than the KF runs. Runs with the KF scheme are more sensitive to the CAPE amount than the BMJ runs. A fairly well-defined split in morphology was observed, with squall lines having trading stratiform regions likely in scenarios associated with higher equitable threat scores (ETSs) and nonlinear convective clusters strongly dominating the more poorly forecast weakly forced events.

Comments

This article is from Weather and Forecasting 19 (2004): 428, doi: 10.1175/1520-0434(2004)019<0428:MRFAAA>2.0.CO;2. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2004
Collections