Multi-Stage Introduction of Precious and Critical Metals in Pyrite: A Case Study from the Konos Hill and Pagoni Rachi Porphyry/Epithermal Prospects, NE Greece

Thumbnail Image
Date
2020-09-05
Authors
Mavrogonatos, Constantinos
Voudouris, Panagiotis
Zaccarini, Federica
Klemme, Stephan
Berndt, Jasper
Tarantola, Alexandre
Melfos, Vasilios
Spry, Paul
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Spry, Paul
Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Geological and Atmospheric Sciences
Abstract

The Konos Hill and Pagoni Rachi porphyry-epithermal prospects in northeastern Greece are characterized by abundant pyrite that displays important textural and geochemical variations between the various ore stages. It is commonly fine-grained and anhedral in the porphyry-related mineralization (M- and D-type veins), while it forms idiomorphic, medium- to coarse-grained crystals in the late, epithermal style veins (E-type). Porphyry-style pyrite from both prospects is characterized by an enrichment in Co, Se, Cu, and minor Zn, and a depletion in other trace elements, like Bi, Mo, Ag, etc. Pyrite in epithermal-style mineralization is mostly characterized by the presence of As, Bi, Pb, Ni, and Se. Gold in pyrite from all mineralization stages occurs as a non-stoichiometric substituting element, and its abundance correlates with As content. Arsenic in pyrite from Konos Hill records an increase from the porphyry stage to the epithermal stage (along with gold); however, at Pagoni Rachi, the highest Au and As contents are recorded in D-type pyrite and in the epithermal stage. The composition of the studied pyrite marks changes in the physico-chemical conditions of the ore-forming fluids and generally follows the geochemical trends from other porphyry-epithermal systems elsewhere. However, a notable enrichment of Se in the porphyry-style pyrite here is a prominent feature compared to other deposits and can be considered as an exploration tool towards Au-enriched mineralized areas.

Comments

This article is published as Mavrogonatos, C.; Voudouris, P.; Zaccarini, F.; Klemme, S.; Berndt, J.; Tarantola, A.; Melfos, V.; Spry, P.G. Multi-Stage Introduction of Precious and Critical Metals in Pyrite: A Case Study from the Konos Hill and Pagoni Rachi Porphyry/Epithermal Prospects, NE Greece. Minerals 2020, 10, 784. doi:10.3390/min10090784.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2020
Collections