Temporal–Spatial Scales of Observed and Simulated Precipitation in Central U.S. Climate

Thumbnail Image
Date
2003-11-01
Authors
Decker, Steven
Donavon, Rodney
Pan, Zaitao
Takle, Eugene
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gutowski, William
Professor
Person
Takle, Eugene
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
AgronomyGeological and Atmospheric Sciences
Abstract

Precipitation intensity spectra for a central U.S. region in a 10-yr regional climate simulation are compared to corresponding observed spectra for precipitation accumulation periods ranging from 6 h to 10 days. Model agreement with observations depends on the length of the precipitation accumulation period, with similar results for both warm and cold halves of the year. For 6- and 12-h accumulation periods, simulated and observed spectra show little overlap. For daily and longer accumulation periods, the spectra are similar for moderate precipitation rates, though the model produces too many low-intensity precipitation events and too few high-intensity precipitation events for all accumulation periods. The spatial correlation of simulated and observed precipitation events indicates that the model's 50-km grid spacing is too coarse to simulate well high-intensity events. Spatial correlations with and without very light precipitation indicate that coarse resolution is not a direct cause of excessive low-intensity events. The model shows less spread than observations in its pattern of spatial correlation versus distance, suggesting that resolved model circulation patterns producing 6-hourly precipitation are limited in the range of precipitation patterns they can produce compared to the real world. The correlations also indicate that replicating observed precipitation intensity distributions for 6-h accumulation periods requires grid spacing smaller than about 15 km, suggesting that models with grid spacing substantially larger than this will be unable to simulate the observed diurnal cycle of precipitation.

Comments

This article is from J. Climate, 16, 3841–3847. doi: http://dx.doi.org/10.1175/1520-0442(2003)016<3841:TSOOAS>2.0.CO;2. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2003
Collections