A Method to Represent Heterogeneous Materials for Rapid Prototyping: The Matryoshka Approach

Thumbnail Image
Date
2014-01-01
Authors
Lei, Shuangyan
Frank, Matthew
Anderson, Donald
Brown, Thomas
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Frank, Matthew
Professor
Research Projects
Organizational Units
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Department
Industrial and Manufacturing Systems Engineering
Abstract

Purpose—The purpose of this paper is to present a new method for representing heterogeneous materials using nested STL shells, based, in particular, on the density distributions of human bones.

Design/methodology/approach—Nested STL shells, called Matryoshka models, are described, based on their namesake Russian nesting dolls. In this approach, polygonal models, such as STL shells, are “stacked” inside one another to represent different material regions. The Matryoshka model addresses the challenge of representing different densities and different types of bone when reverse engineering from medical images. The Matryoshka model is generated via an iterative process of thresholding the Hounsfield Unit (HU) data using computed tomography (CT), thereby delineating regions of progressively increasing bone density. These nested shells can represent regions starting with the medullary (bone marrow) canal, up through and including the outer surface of the bone.

Findings—The Matryoshka approach introduced can be used to generate accurate models of heterogeneous materials in an automated fashion, avoiding the challenge of hand-creating an assembly model for input to multi-material additive or subtractive manufacturing.

Originality/Value—This paper presents a new method for describing heterogeneous materials: in this case, the density distribution in a human bone. The authors show how the Matryoshka model can be used to plan harvesting locations for creating custom rapid allograft bone implants from donor bone. An implementation of a proposed harvesting method is demonstrated, followed by a case study using subtractive rapid prototyping to harvest a bone implant from a human tibia surrogate.

Comments

This is a manuscript of an article from Rapid Prototyping Journal 20 (2014): 390, doi:10.1108/RPJ-10-2012-0095. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections