Modern measurement, probability, and statistics: Some generalities and multivariate illustrations

Thumbnail Image
Date
2016-01-01
Authors
Vardeman, Stephen
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Vardeman, Stephen
University Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Department
StatisticsIndustrial and Manufacturing Systems Engineering
Abstract

In broad terms, effective probability modeling of modern measurement requires the development of (usually parametric) distributions for increasingly complex multivariate outcomes driven by the physical realities of particular measurement technologies. “Differences” between measures of distribution center and truth function as “bias.” Model features that allow hierarchical compounding of variation function to describe “variance components” like “repeatability,” “reproducibility,” “batch-to-batch variation,” etc. Mixture features in models allow for description (and subsequent downweighting) of outliers. For a variety of reasons (including high-dimensionality of parameter spaces relative to typical sample sizes, the ability to directly include “Type B” considerations in assessing uncertainty, and the relatively direct path to uncertainty quantification for the real objectives of measurement), Bayesian methods of inference in these models are increasingly natural and arguably almost essential.

We illustrate the above points first in an overly simple but instructive example. We then provide a set of formalisms for expressing these notions. Then we illustrate them with real modern measurement applications including (1) determination of cubic crystal orientation via electron backscatter diffraction, (2) determination of particle size distribution through sieving, and (3) analysis of theoretically monotone functional responses from thermogravimetric analysis in a materials study.

Comments

This is an Accepted Manuscript of an article published by Taylor & Francis in Quality Engineering on January 29, 2016, available online: http://www.tandfonline.com/10.1080/08982112.2015.1100440.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections