Scenario Construction and Reduction Applied to Stochastic Power Generation Expansion Planning

Thumbnail Image
Date
2013-01-01
Authors
Feng, Yonghan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ryan, Sarah
Department Chair
Research Projects
Organizational Units
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Department
Industrial and Manufacturing Systems Engineering
Abstract

A challenging aspect of applying stochastic programming in a dynamic setting is to construct a set of discrete scenarios that well represents multivariate stochastic processes for uncertain parameters. Often this is done by generating a scenario tree using a statistical procedure and then reducing its size while maintaining its statistical properties. In this paper, we test a new scenario reduction heuristic in the context of long-term power generation expansion planning. We generate two different sets of scenarios for future electricity demands and fuel prices by statistical extrapolation of long-term historical trends. The cardinality of the first set is controlled by employing increasing length time periods in a tree structure while that of the second set is limited by its lattice structure with periods of equal length. Nevertheless, some method of scenario thinning is necessary to achieve manageable solution times. To mitigate the computational complexity of the widely-used forward selection heuristic for scenario reduction, we customize a new heuristic scenario reduction method named forward selection in wait-and-see clusters (FSWC) for this application. In this method, we first cluster the scenarios based on their wait-and-see solutions and then apply fast forward selection within clusters. Numerical results for a twenty year generation expansion planning case study indicate substantial computational savings to achieve similar solutions as those obtained by forward selection alone.

Comments

NOTICE: This is the author’s version of a work that was accepted for publication in Computers & Operations Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers & Operations Research, 40 (2013): 9, doi: 10.1016/j.cor.2012.05.005. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections