The effects of load weight and load starting height on variability of lifting kinematics and kinetics

Thumbnail Image
Date
2019-09-01
Authors
Norasi, Hamid
Koenig, Jordyn
Mirka, Gary
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Mirka, Gary
University Professor
Research Projects
Organizational Units
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Department
Industrial and Manufacturing Systems Engineering
Abstract

Trunk kinematic variables have been used to understand the risk of low back injuries in the workplace. Variability in the trunk kinematics as an individual performs a repetitive lifting task is an underexplored area of research. In the current study, it was hypothesized that workplace variables (starting height of lift and load weight) would have an impact on the variance in the kinematic and kinetic variables. Twenty participants performed 60 repetitions of an asymmetric lifting task under four different conditions representing two levels of load weight (5% or 10% of the participant's body weight) and two levels of starting height (80% or 120% of the participant's knee height). The Lumbar Motion Monitor was used to capture trunk kinematic variables from the concentric range of lifting motion while ground reaction forces were collected using a force platform. The primary dependent variables were the variance of kinematic and kinetic variables across these 60 repetitions. The results showed a significant effect of starting height on the variance of sagittal plane trunk kinematics with the lower starting height generating an increased variance (sagittal range of motion increased by 55%, average sagittal velocity increased by 95%, peak sagittal velocity increased by 105%, and peak sagittal acceleration increased by 130%). There was no consistent significant main effect of either independent variable on the variance of the transverse plane kinematics. Additionally, there was no significant effect of load weight on the variance of any trunk kinematic variables tested. In terms of ground reaction forces, it was shown that the starting height of the load had a significant effect on the variance of peak vertical ground reaction force, while the weight of the load had a significant effect on the variance of the peak shear force.

Comments

This is a manuscript of an article published as Norasi, Hamid, Jordyn Koenig, and Gary A. Mirka. "The effects of load weight and load starting height on variability of lifting kinematics and kinetics." International Journal of Industrial Ergonomics 73 (2019): 102830. DOI: 10.1016/j.ergon.2019.102830. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections