Campus Units

Industrial and Manufacturing Systems Engineering

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

5-2016

Journal or Book Title

Wind Energy

Volume

19

Issue

5

First Page

873

Last Page

893

Research Focus Area(s)

​Operations Research

DOI

10.1002/we.1872

Abstract

In power systems with high penetration of wind generation, probabilistic scenarios are generated for use in stochastic formulations of day-ahead unit commitment problems. To minimize the expected cost, the wind power scenarios should accurately represent the stochastic process for available wind power. We employ some statistical evaluation metrics to assess whether the scenario set possesses desirable properties that are expected to lead to a lower cost in stochastic unit commitment. A new mass transportation distance rank histogram is developed for assessing the reliability of unequally likely scenarios. Energy scores, rank histograms and Brier scores are applied to alternative sets of scenarios that are generated by two very different methods. The mass transportation distance rank histogram is best able to distinguish between sets of scenarios that are more or less calibrated according to their bias, variability and autocorrelation.

Comments

This is the peer reviewed version of the following article from Wind Energy 19 (2016): 873, which has been published in final form at http://dx.doi.org/ 10.1002/we.1872. This article may be used for non-commercial purposed in accordance with Wiley Terms and Conditions for self-archiving.

Copyright Owner

John Wiley & Sons, Ltd.

Language

en

File Format

application/pdf

Published Version

Share

COinS