Joint Source-Relay Design for Full-Duplex MIMO AF Relay Systems

Thumbnail Image
Date
2016-01-01
Authors
Shi, Qingjiang
Hong, Mingyi
Gao, Xiqi
Song, Enbin
Cai, Yunlong
Xu, Weiqiang
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hong, Mingyi
Assistant Professor
Research Projects
Organizational Units
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Department
Industrial and Manufacturing Systems Engineering
Abstract

The performance of full-duplex (FD) relay systems can be greatly impacted by the self-interference (SI) at relays. By exploiting multiple antennas, the spectral efficiency of FD relay systems can be enhanced through spatial SI mitigation. This paper studies joint source transmit beamforming and relay processing to achieve rate maximization for FD multiple-input-multiple-output (MIMO) amplify-and-forward (AF) relay systems with consideration of relay processing delay. The problem is difficult to solve mainly due to the SI constraint induced by the relay processing delay. In this paper, we first present a sufficient condition under which the relay amplification matrix has rank-one structure. Then, for the case of rank-one amplification matrix, the rate maximization problem is equivalently simplified into an unconstrained problem that can be locally solved using the gradient ascent method. Next, we propose a penalty-based algorithmic framework, named P-BSUM, for a class of constrained optimization problems that have difficult equality constraints in addition to some convex constraints. By rewriting the rate maximization problem with a set of auxiliary variables, we apply the P-BSUM algorithm to the rate maximization problem in the general case. Finally, numerical results validate the efficiency of the proposed algorithms and show that the joint source-relay design approach under the rankone assumption could be strictly suboptimal as compared to the P-BSUM-based joint source-relay design approach.

Comments

This is a manuscript from IEEE Transactions on Signal Processing 64 (2016): 6118, DOI: 10.1109/TSP.2016.2605074. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections