Iowa’s Bridge and Highway Climate Change and Extreme Weather Vulnerability Assessment Pilot

Thumbnail Image
Date
2015-03-01
Authors
Anderson, Christopher
Claman, David
Mantilla, Ricardo
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Institute for Transportation
InTrans administers 14 centers and programs, and several other distinct research specialties, and a variety of technology transfer and professional education initiatives. More than 100 Iowa State University faculty and staff work at InTrans, and from 200 to 250 student assistants from several ISU departments conduct research while working closely with university faculty. InTrans began in 1983 as a technical assistance program for Iowa’s rural transportation agencies.
Journal Issue
Is Version Of
Versions
Series
Department
Institute for Transportation
Abstract

The Iowa Department of Transportation (DOT) is responsible for approximately 4,100 bridges and structures that are a part of the state’s primary highway system, which includes the Interstate, US, and Iowa highway routes. A pilot study was conducted for six bridges in two Iowa river basins—the Cedar River Basin and the South Skunk River Basin—to develop a methodology to evaluate their vulnerability to climate change and extreme weather. The six bridges had been either closed or severely stressed by record streamflow within the past seven years. An innovative methodology was developed to generate streamflow scenarios given climate change projections. The methodology selected appropriate rainfall projection data to feed into a streamflow model that generated continuous peak annual streamflow series for 1960 through 2100, which were used as input to PeakFQ to estimate return intervals for floods. The methodology evaluated the plausibility of rainfall projections and credibility of streamflow simulation while remaining consistent with U.S. Geological Survey (USGS) protocol for estimating the return interval for floods. The results were conveyed in an innovative graph that combined historical and scenario-based design metrics for use in bridge vulnerability analysis and engineering design. The pilot results determined the annual peak streamflow response to climate change likely will be basin-size dependent, four of the six pilot study bridges would be exposed to increased frequency of extreme streamflow and would have higher frequency of overtopping, the proposed design for replacing the Interstate 35 bridges over the South Skunk River south of Ames, Iowa is resilient to climate change, and some Iowa DOT bridge design policies could be reviewed to consider incorporating climate change information.

Comments
Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Collections