Document Type

Report

Publication Date

8-2016

Abstract

This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) micro-electromechanical sensors and systems (MEMS) embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system for health monitoring of pavement systems (Final Report Volume II).

The Volume I report focused on the evaluation of COTS MEMS sensors embedded in concrete pavement sections. The Volume II report covers the set of MEMS sensors that were developed as single-sensing units for measuring moisture, temperature, strain, and pressure. These included the following sensors: (1) nanofiber-based moisture sensors, (2) graphene oxide (GO)–based moisture sensors, (3) flexible graphene strain sensors with liquid metal, (4) graphene strain and pressure sensors, (5) three-dimensional (3D) planar and helical structured graphene strain sensors, (6) temperature sensors, and (7) water content sensors. In addition, the MEMS temperature sensors and the MEMS water content sensors were integrated into one sensing unit as a multifunctional sensor. A wireless signal transmission system was built for MEMS sensor signal readings. Characterization of the sensors was conducted and sensor responses were analyzed using different applications. The sensors developed were installed and tested inside concrete. The results demonstrated the capability to detect sensor response changes at the installed locations.

Comments

For this and other reports, see the InTrans project page at http://www.intrans.iastate.edu/research/projects/detail/?projectID=-1514549670

Report Number

IHRB Project TR-637; InTrans Project 12-417

Granting Agencies

Iowa Highway Research Board, Iowa Department of Transportation

Language

English

File Format

pdf

File Size

5.64 mb

Share

COinS