Investigation of Warm-Mix Asphalt for Iowa Roadways, Phase II

Thumbnail Image
Date
2013-09-01
Authors
Buss, Ashley
Williams, R. Christopher
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Institute for Transportation
Abstract

Phase II of this study further evaluated the performance of plant-produced warm-mix asphalt (WMA) mixes by conducting additional mixture performance tests at a broader range of temperatures, adding additional pavements to the study, comparing virgin and recovered binder properties, performing pavement condition surveys, and comparing survey data with the Mechanistic Empirical Pavement Design Guide (MEPDG) forecast for pavement damage over 20 years of service life. Further objectives detailing curing behavior, quality assurance testing, and hybrid technologies were as follows: * Compare the predicted and observed field performance of existing WMA trials produced in the previous Phase I study to that of hot-mix asphalt (HMA) control sections to determine if Phase I conclusions are translating to the field; * Identify any curing effect (and timing of the effect) of WMA mixtures and binders in the field; * Determine how the field-compacted mixture properties and recovered binder properties of WMA compare to those of HMA over time for technologies common to Iowa; * Identify the protocols for WMA sample preparation for volumetric and performance testing that best simulate field conditions. The findings of this study indicate that WMA additives do show statistical differences in mixture properties in some of the mixes tested. These differences will not always be statistically different from mixture to mixture. Multiple factors, such as WMA additive type, amount of recycled asphalt material, construction conditions, and mixture variability all play a role in determining the extent of which WMA and HMA mixes differ. Other significant findings of this study include effects of curing, aging in recovered binders from HMA and WMA cores, and the influence of recycled asphalt shingles (RAS) used with WMA. These findings will be of interest to owner agencies and contractors utilizing WMA technologies.

Comments

Please see the full report in http://lib.dr.iastate.edu/intrans_reports

Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Collections