Track

TAS

Presentation Type

Poster

Description

A numerical model was applied to evaluate heat stress under different thermal environmental conditions, activity intensities, and the effect of movement status on clothing properties when wearing a typical CPC. It was concluded that the ambient temperature and metabolic rate is strongly associated with heat stress and reduced the tolerance time. Although the manikin movement greatly affected the thermal insulation and evaporative resistance of CPC, the effects of movement on heat stress can be neglected.

Share

COinS
 
Jan 1st, 12:00 AM

Analysis of heat stress associated with wearing chemical protective clothing using a numerical model

A numerical model was applied to evaluate heat stress under different thermal environmental conditions, activity intensities, and the effect of movement status on clothing properties when wearing a typical CPC. It was concluded that the ambient temperature and metabolic rate is strongly associated with heat stress and reduced the tolerance time. Although the manikin movement greatly affected the thermal insulation and evaporative resistance of CPC, the effects of movement on heat stress can be neglected.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.